Quasiconvex Semidefinite Minimization Problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite programming based approaches to the break minimization problem

This paper deals with the break minimization problem of sports scheduling. The problem is to find a stadium assignment that minimizes the total number of breaks under a given round-robin tournament schedule. We show that the problem can be formulated as MAX RES CUT and MAX 2SAT. We also apply Goemans and Williamson’s approximation algorithm based on positive semidefinite programming relaxation....

متن کامل

An inexact proximal method for quasiconvex minimization

In this paper we propose an inexact proximal point method to solve constrained minimization problems with locally Lipschitz quasiconvex objective functions. Assuming that the function is also bounded from below, lower semicontinuous and using proximal distances, we show that the sequence generated for the method converges to a stationary point of the problem.

متن کامل

Convergence of the Proximal Point Method for Quasiconvex Minimization

This paper extends the full convergence of the classic proximal point method to solve continuous quasiconvex minimization problems in Euclidian spaces. Under the assumption that the global minimizer set is nonempty we prove the full convergence of the sequence generated by the method to a certain generalized critical point of the problem.

متن کامل

Steepest descent method for quasiconvex minimization on Riemannian manifolds

This paper extends the full convergence of the steepest descent algorithm with a generalized Armijo search and a proximal regularization to solve quasiconvex minimization problems defined on complete Riemannian manifolds. Previous convergence results are obtained as particular cases of our approach and some examples in non Euclidian spaces are given.

متن کامل

A scalarization proximal point method for quasiconvex multiobjective minimization

In this paper we propose a scalarization proximal point method to solve multiobjective unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions. We prove, under natural assumptions, that the sequence generated by the method is well defined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an extension, for the non convex case,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization

سال: 2013

ISSN: 2314-6486

DOI: 10.1155/2013/346131